

Artificial Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution

Feng Wang, Wen-Guang Wang, Hong-Yan Wang, Gang Si, Chen-Ho Tung, and Li-Zhu Wu*

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China

ABSTRACT: Hydrogen (H_2) has the potential to replace fossil fuels as the clean energy carrier of the future, particularly if it is produced by water splitting using visible light. Natural [FeFe]-hydrogenase ([FeFe]-H₂ase) is known to catalyze the reversible reduction of protons to H₂ with remarkable activity under mild conditions. In this respect, artificial photosynthetic systems for H₂ production by using sunlight and [FeFe]-H₂ase mimics have attracted much attention, and great progress has been made in recent years. This perspective paper describes our efforts to achieve H₂ evolution by [FeFe]-H₂ase mimics powered by a photosensitizer (PS). Covalent-linked molecular dyads and a triad, a self-assembled micelle system and a robust, inexpensive, nanocrystal CdTe system will be highlighted.

KEYWORDS: artificial photosynthesis, [FeFe]-hydrogenase, hydrogen evolution, photocatalyst, photoinduced electron transfer

1. INTRODUCTION

Utilization of sunlight to make fuels represents a promising solution to the looming energy crisis and climate change. Hydrogen (H_2) with high specific enthalpy of combustion and benign combustion product (water) is envisaged to be the ideal fuel for reducing mankind's dependence on fossil fuels and subsequent emissions of greenhouse gases.¹⁻³ Nature long ago figured out how to use a photosynthetic complex to capture sunlight, and then to store its energy in a chemical form, H_2 , the primary processes of which involve three fundamentals.³⁻⁵ The first is light capture: absorbing the sunlight by chlorophyll. The second is electron transfer: pushing a sunlight-excited electron off its home atom to form spatially separated electron/hole pairs. The third is catalysis: the generated holes are captured by the oxygen-evolving complex to oxidize water (H_2O) to oxygen (O_2) , and the electrons are captured by photosystem I to reduce the proton to H₂, or carbon dioxide to carbon fuels. Thus, the overall primary event of photosynthesis is to store solar energy in a fuel by rearranging the chemical bonds of H₂O to form H_2 and O_2 .

Irrespective of O_2 evolution, hydrogenases (H₂ases), a class of metalloenzymes in certain bacteria and algae, catalyze the reversible reduction of proton and oxidation of H₂.⁶

Among these distinct H₂ases of [Fe]-H₂ase, [NiFe]-H₂ase, and [FeFe]-H₂ase, [FeFe]-H₂ase is pretty good at catalyzing the reduction of protons to H₂ with turnover rate high up to 6000–9000 s⁻¹ under mild conditions (working near the Nernstian potential).⁷ X-ray crystallographic analysis revealed that the active center of [FeFe]-H₂ase features a butterfly Fe₂S₂ subunit coordinated by a cysteine-linked Fe₄S₄ cluster, carbon monoxide, and cyanide ligand, and by a dithiolate bridging the two iron centers (Scheme 1).^{8,9} The Fe₂S₂ subunit serves as the catalytic center for proton reduction, and the Fe₄S₄ cluster mediates transfer electron to and from the active site.

The success and importance of photosynthesis have inspired researchers to construct artificial photosynthetic systems for solar energy conversion. Over the past decade, a variety of [FeFe]-H₂ase mimics have been shown to function as catalysts for chemical reduction of protons.¹⁰ It has been clear that the electron transfer either electrochemical or photochemical to the Fe_2S_2 active site of [FeFe]-H₂ase mimics is a prerequisite for H₂ evolution.^{11–14} From a photochemical point of view, the

Received:September 7, 2011Revised:January 20, 2012Published:January 30, 2012

Scheme 1. Active Site of Natural [FeFe]-H₂ase

electron transfer is triggered by a preceding absorption of a photon by a photosensitizer. In general, four components, photosensitizer (PS), Fe₂S₂ proton reduction catalyst, and sacrificial electron donor (D) and proton source, are necessary for a photochemical system to accomplish light-driven H₂ evolution. No matter how the four components are assembled, the photoexcited PS (PS*) must be quenched either oxidatively or reductively to generate the reduction equivalents by electron transfer. Along this line of consideration, the determination of free energy change (ΔG^0) of the photoinduced electron transfer process is governed by the Rehm–Weller equation (eq 1),^{14,15}

$$\Delta G^{0} = E_{\rm ox} - E_{\rm red} - E_{00} - C \tag{1}$$

where $E_{\rm ox}$ is the oxidative potential of the species donating an electron, and $E_{\rm red}$ is the reductive potential of the species accepting an electron; E_{00} is the excitation energy of the PS, and C is the sum of solvation effect and the Coulombic energy of the formed iron pair in solution.

In the case of oxidative quenching, the PS* delivers an electron to a Fe_2S_2 catalytic center giving rise to $PS^{+\bullet}$ and $Fe_2S_2^{-\bullet}$, that is, the Fe^1Fe^0 species. The $PS^{+\bullet}$ then reacts with a sacrificial electron donor (D) to regenerate PS. Alternatively, the PS* accepts an electron from a sacrificial electron donor (D), that is, reductive quenching, to form reduced $PS^{-\bullet}$ and oxidized sacrificial electron donor (D⁺) that is easily degraded. The $PS^{-\bullet}$ subsequently reduces the Fe_2S_2 catalytic center in the dark to produce the Fe^1Fe^0 species. Spectroscopic and

electrochemical studies have demonstrated that the Fe^IFe⁰ species can further react with a proton to generate a [Fe^IFe^{II}·H] intermediate for H₂ evolution.¹¹⁻¹⁴

Since the first attempt by Sun and Åkermark to construct an artificial photocatalytic system for H₂ evolution in 2003,¹⁶ extensive studies have been performed focusing on the Fe₂S₂ cluster. A summary of the photochemical systems, related to [FeFe]-H₂ase mimics for H_2 evolution in the literature, is shown in Table 1. It is encouraging to see that the turnover number (TON) of the artificial [FeFe]-H₂ase system has been increased from null to more than 500, and the stability under irradiation has been improved from 1 to 10 h. Comprehensive reviews have described both electrochemical and photo-chemical progress on $[FeFe]-H_2ase$ mimics.^{14,17–21} Our investigations to achieve light-driven H₂ evolution by [FeFe]- H_2 as mimics have also been reported in a series of papers. In this perspective, we will compile the following four stories to illustrate a few approaches that may be useful in the design of artificial photosynthetic systems for H₂ evolution with high efficiency and stability.

- (1) H_2 evolution by molecular dyads;
- (2) H_2 evolution by a molecular triad;
- (3) H₂ evolution from a self-assembling system in an aqueous solution—a biomimetic pathway;
- (4) H_2 evolution from a robust, inexpensive, nanocrystal CdTe system in water.

2. PHOTOCHEMICAL H₂ EVOLUTION BY MOLECULAR DYADS BASED ON [FEFE]-H₂ASE MIMICS IN HOMOGENEOUS SOLUTION

To make a PS-Fe₂S₂ molecular dyad, two different strategies have been put forward (Scheme 2). In the first strategy, the dithiolate-bridge is employed to connect a PS and a Fe₂S₂ catalytic center of [FeFe]-H₂ase mimics. The second strategy involves anchoring a PS to one of the iron centers of the Fe₂S₂ active site. Sun and co-workers reported PS-Fe₂S₂ molecular dyads **1** and **2** (Scheme 3) by covalently linking a ruthenium(II) bipyridine

Table 1.	Photochemical	Systems Related to	FeFe	-Hase	Mimics	for H	, Evolution
		/					

							1	
type	PS	catalyst	proton source	electron donor (D)	solvent	$T_{\rm irr}^{\ a}/{ m h}$	TON ^b	ref. ^c
dyad	1	1					0	16
	2	2					0	29, 30
	3	3					0	31
	4	4					0	32
	5	5	CF ₃ COOH	ArSH	CH_2Cl_2	2	0.16	33
	6	6	N ⁱ Pr ₂ EtH·OAc	N ⁱ Pr ₂ EtH·OAc	toluene	1.3	1.96	34
	7	7	CF ₃ COOH	EtSH	CH_2Cl_2	1	0.31	35, 36
	8	8	CF ₃ COOH		toluene	NA^d	0.45	37
	9a	9a	CH ₃ COOH	CH ₃ OH	CH ₃ CN/H ₂ O	2	0.08	25
	9b	9b	CH ₃ COOH	CH ₃ OH	CH_3CN/H_2O	2	0.13	25
	9c	9c	CH ₃ COOH	CH ₃ OH	CH ₃ CN/H ₂ O	2	0.14	25
triad	11a	11a	H_2A^e	H ₂ A	CH ₃ CN	1.5	0.35	28
multicomponent (micelle)	12a	12c	H_2A^e	H ₂ A	H_2O	2	0.13	26
	12a	12d	H_2A^e	H ₂ A	H_2O	2	0.03	26
	12b	12c	H_2A^e	H ₂ A	H ₂ O	2	0.07	26
	12b	12d	H_2A^e	H ₂ A	H_2O	2	0.04	26
multicomponent (organic/water)	$\operatorname{Ru}(bpy)_{3}^{2+}$	13	H_2A^e	H ₂ A	CH_3CN/H_2O	3	4.3	40
	$Ir(ppy)_2(bpy)^+$	13	H_2O/TEA^f	TEA	acetone/H ₂ O	8	466	42
	$\operatorname{Ru}(bpy)_{3}^{2+}$	14	H_2A^e	H_2A	DMF/H ₂ O	2.3	200	41
multicomponent (water)	CdTe QDs	15	H_2A^e	H ₂ A	H ₂ O	10	505	27

^{*a*}Irradiation time. ^{*b*}Based on Fe₂S₂ catalyst. ^{*c*}Reference. ^{*d*}No available data. ^{*e*}Ascorbic acid. ^{*f*}Triethylamine.

Scheme 2. Synthetic Strategies to PS-Fe₂S₂ Molecular Dyads

PS to a Fe₂S₂ active site of [FeFe]-H₂ase mimic.^{16,29,30} Later, Song developed dyad **3** by coordinatively linking a zinc porphyrin to a pyridyl modified Fe₂S₂ active site.³¹ Ott made use of the second approach to synthesize dyad **4** with phenylphosphine-derived ruthenium(II) PS to one of iron centers of the Fe₂S₂ active site (Scheme 3).³² Nevertheless, these dyads were unable to produce H₂ photochemically in homogeneous solution (Table 1). Electrochemical and photophysical studies on ruthenium(II) dyads **1**, **2**, and **4** suggested that the reduction potential of the Fe₂S₂ active site is more negative than the excited state potential of the ruthenium(II) PS, thus leading to the free energy change of the photoinduced electron transfer positive and photoreduction of the Fe₂S₂ catalytic center thermodynamically unfeasible.

Until very recently, photochemical H₂ evolution systems based on PS-Fe₂S₂ molecular dyads appeared at the forefront (Table 1, Scheme 3). Sun and co-workers assembled the zinc porphyrin PS and the pyridyl-functionalized Fe₂S₂ active site to form dyad 5, and achieved photoinduced H_2 evolution with a TON of 0.16.33 Reek, Hartl, and van Leeuwen linked two different zinc porphyrins to two iron centers in one Fe₂S₂ active site by a coordinative bond to afford dyad 6^{34} Despite of not being entirely understood, H₂ could be produced when two different types of zinc-porphyrin PS were present in the solution upon irradiation at $\lambda > 530$ nm (TON = 1.96). In 2009, Song et al. reported that dyad 7 was able to produce H_2 under visible light irradiation (TON = 0.31).^{35,36} In 2010, Wasielewski and co-workers employed imide as a linkage to bridge zinc porphyrin PS and Fe₂S₂ active site.³⁷ They observed the photoinduced electron transfer from the PS to the Fe₂S₂ active site, and obtained H₂ by irradiation of a solution containing dyad 8 and CF₃COOH.

In the meantime, we have engaged in the investigation of light-driven H_2 evolution by [FeFe]- H_2 ase mimics. Considering that electron transfer is crucial for the realization of H_2 evolution, we selected a rhenium(I) polypyridyl complex as a PS because of its powerful redox potential, visible-light absorption,

Scheme 3. Structure of Previous Reported PS-Fe₂S₂ Molecular Dyads 1-8

Scheme 4. PS-Fe₂S₂ Molecular Dyads 9a-9d and Their References 10a-10c

long lifetime of the excited state, and thermal and photochemical stability.³⁸ An iso-cyanide group was incorporated to anchor the rhenium(I) PS to one of the iron cores of the Fe_2S_2 catalytic center affording PS-Fe₂S₂ molecular dyads 9a-9c in reasonable yields (Scheme 4).²⁵ The linear, rigid, and conjugated bridges were noted to control the separation between PS and Fe₂S₂, resulting in the intramolecular electron transfer from the PS^* to the Fe_2S_2 catalytic site, and the formation of long-lived Fe^IFe^0 species. More importantly, molecular dyads 9a-9c and their intermolecular references 10a, 10b, or 10c with 9d, respectively, could evolve H_2 in degassed mixed solution of CH3CN/CH3OH/H2O under visible light irradiation, in which CH3COOH was used as proton source and CH₃OH was the sacrificed electron donor. With 1 h of irradiation, the TON of H₂ produced from the molecular dyads is more than that of their corresponding intermolecular multicomponent systems under the identical condition (Table 1). The difference in the H_2 evolution for **9a**, **9b**, and **9c** implied that the orientation of the rhenium(I) PS, the specific bridge, and the conjugation of the auxiliary ligand play roles in mediating the light-driven H₂ production.

The photophysical properties of the PS-Fe₂S₂ molecular dyads, together with their reference compounds in CH₃CN solution were examined. The luminescence of **9a–9c** was significantly quenched, but no spectral change could be detected in **10a–10c** when equivalent **9d** was added into the solution under the same condition. Evidently, the intramolecular quenching of the PS* by the Fe₂S₂ catalytic center in molecular dyads **9a–9c** operated. The larger quenching extent for **9b** and **9c** than **9a** suggested the more efficient intramolecular quenching of the excited PS by the Fe₂S₂ catalytic center. According to the determined oxidation potential $E_{\rm ox}$ of the PS, reduction potential $E_{\rm red}$ of the Fe₂S₂

catalytic center, and the excited state energy E_{00} of the PS, the free-energy change shown in Table 2 indicated that the electron transfer process from the excited PS to the Fe₂S₂ catalytic center in the designed systems is exothermic. The greater driving force is responsible for the more effective intramolecular electron transfer, and thereby results in the luminescence quenching and photochemical H₂ generation with higher efficiency.

Time-resolved absorption spectroscopy (transient absorption spectra) provided direct evidence for the photoinduced electron transfer from the excited PS to the Fe₂S₂ catalytic center in these PS-Fe₂S₂ molecular dyads. As shown in Figure 1, laser excitation led to a strong transient absorption of the ³MLCT state for reference compounds 10a, 10b, and 10c immediately. However, the characteristic absorption of the molecular dyads is quite different from that of 10a, 10b, and 10c, but very similar to the profiles of the Fe^IFe⁰ species generated by the electrochemical reduction of [FeFe]-H₂ase models.¹³ The decay of the absorption is monoexponential with a lifetime of 780 μ s for 9a, and longer than 2 ms for 9b and 9c (no decay was observed within instrument limitation of 2 ms). Prolonged irradiation of 9a, 9b, and 9c in CH₃CN solution resulted in no permanent change in their transient absorption spectra, indicating that the Fe^IFe⁰ species formed by irradiation was stable in the range of microseconds.

On the basis of the above results, it could be speculated that when the PS in the PS-Fe₂S₂ molecular dyads is excited, intramolecular electron transfer takes place to generate the reduced Fe^IFe⁰ species. The greater the driving force is, the more effective the electron-transfer process will be (9c > 9b > 9a). The generated Fe^IFe⁰ species is then reacted with a proton to produce a [Fe^IFe^{II}·H] intermediate for H₂ evolution, and the oxidized PS^{+•} is reduced by accepting an electron from the

Tab	e î	2.	Elect	roc	hemi	cal	and	S	pectrosco	pic	Data	of	Compound	ls f	from	Our	Lal	borator	y
-----	-----	----	-------	-----	------	-----	-----	---	-----------	-----	------	----	----------	------	------	-----	-----	---------	---

type	system	solvent	E_{00}^{a}/eV PS	$E_{ox}^{b}/V PS/PS^{+}$	$E_{\rm red}^{\ \ b}/{\rm V}~{\rm Fe^IFe^I/Fe^IFe^0}$	$\Delta G^0/{ m eV}$	ref. ^c
dyads/reference	9a	CH ₃ CN	2.50	0.83	-1.62	-0.05^{e}	25
	9b	CH ₃ CN	2.53	0.81	-1.60	-0.12^{e}	25
	9c	CH ₃ CN	2.83	0.84	-1.59	-0.40^{e}	25
	10a + 9d	CH ₃ CN	2.50	0.83	-1.58	-0.09^{e}	25
	10b + 9d	CH ₃ CN	2.53	0.81	-1.58	-0.14^{e}	25
	10c + 9d	CH ₃ CN	2.83	0.84	-1.58	-0.41^{e}	25
triad/reference	11a	CH ₃ CN	2.56	$0.17^d, 1.03$	-1.49	-0.90^{e}	28
	11b + 11c	CH ₃ CN	2.11	$0.19^{d}_{,d}$ 1.04	-1.57	-0.80^{e}	28
multicomponent	12a + 12c	H ₂ O/SDS ^f	2.60	0.94	-1.56	-0.15	26
	12a + 12d	H ₂ O/SDS ^f	2.60	0.94	-1.53	-0.18	26
	12b + 12c	H_2O/SDS^f	2.53	0.97	-1.58	-0.05	26
	12b + 12d	H_2O/SDS^f	2.53	0.97	-1.53	-0.08	26
	15 + CdTe QDs	H ₂ O	1.84 ^g	-0.31	-1.28	-0.87^{e}	27

^{*a*}The excited state energy E_{00} was calculated by using the intersection between emission and excitation spectra. ^{*b*}All potentials versus Fc/Fc⁺. ^{*c*}Reference. ^{*d*}The oxidative potential of Fc/Fc⁺ in triad **11a** and dyad **11b**. ^{*e*}The ΔG^0 is determined by a simplified Rehm–Weller equation $\Delta G^0 = E_{ox} - E_{red} - E_{00}$. ^{*f*}Sodium dodecyl sulfate (SDS) micelle aqueous solution. ^{*g*}The excited state energy E_{00} was determined by using the maximum of the CdTe QDs emission at pH 4.0.

Figure 1. Transient absorption spectra and the corresponding kinetic traces of (a) 9a and 10a; (b) 9b and 10b; (c) 9c and 10c upon laser pulse by 355 nm light in CH₃CN under argon atmosphere. The kinetic trace recorded at 390 nm for 10a and 410 nm for 9a; 390 nm for 10b and 430 nm for 9b; 395 nm for 10c and 420 nm for 9c, respectively.

sacrificial electron donor (D) to get back to the ground state (Scheme 5). The orientation of the PS and the specific linkage in PS-Fe₂S₂ molecular dyads **9a**, **9b** and **9c** were found important for the formation of the $Fe^{I}Fe^{0}$ species. The unprecedented long-lived $Fe^{I}Fe^{0}$ species in the PS-Fe₂S₂ molecular dyads is believed to be responsible for the performance on photochemical H₂ production.

3. PHOTOCHEMICAL H₂ EVOLUTION BY A MOLECULAR TRIAD BASED ON [FEFE]-H₂ASE MIMIC IN HOMOGENEOUS SOLUTION

Photosynthesis in nature provides a blueprint for the conversion of sunlight to chemical energy by a chain of photoinduced electron transfer processes.^{4–6} [FeFe]-H₂ase can couple to the electron transfer events and catalyze the reversible reduction of protons to H₂ with remarkable activity. In an effort to develop artificial molecular systems, we made a rigid molecular triad **11a** by using a ferrocene as a potential electron donor, a rhenium(I) complex as the PS and a Fe₂S₂ cluster as the catalyst (Scheme 6).²⁸ The assembly of the electron donor, the PS, and the Fe₂S₂ Scheme 5. Proposed Photophysical Pathway for PS-Fe₂S₂ Molecular Dyads

catalytic center of [FeFe]-H₂ase mimic provided more powerful driving force for the photoinduced electron transfer than those dyads discussed above,^{25,33–37} and at the same time the long

Scheme 6. Molecular Triad 11a and Its Reference Compounds 11b and 11c

Multi-step electron transfer process in natural [FeFe]-Hases

distance and weak electronic coupling between the terminal donor and the Fe_2S_2 catalytic center in triad **11a** inhibited charge recombination, which is reminiscent of the multistep photoinduced electron transfer employed to achieve long-lived charge separation in natural photosynthesis.

Triad **11a** and its reference compound **11b** are not emissive in solution at room temperature. With the addition of an oxidant into the solution, the typical emission of rhenium(I) complex **11b** was enhanced greatly. However, its absorption in the low-energy region remained unchanged. The results indicated that the rhenium(I) PS and the ferrocene donor in **11b** interacted weakly in the ground state, but such interaction did occur in the excited state. The oxidation of the ferrocene restored the emission capability of the rhenium(I) PS by preventing photoinduced electron transfer from the ferrocene donor to the rhenium(I) PS in complex **11b**. In sharp contrast, with the titration of the oxidant into the solution of triad **11a** under the same condition, not much spectral change implied that the intramolecular quenching of the revived PS by the Fe₂S₂ catalytic center in triad **11a** operated.

Combining electrochemical and spectroscopic studies, we estimated the free energy change of triad 11a, and 11b with 11c, respectively (Table 2). The results demonstrated that the photoinduced electron transfer in the designed system is thermodynamically favorable. More interestingly, information on the electron transfer dynamics was obtained from their time-resolved absorption spectra (Figure 2). The kinetics probed at 400 nm of 11b showed a fast rise phase followed by a slow

decay (Figure 2c). The rise suggests the formation of chargeseparated state in **11b** with forward electron transfer rate constant of 1.09×10^6 s⁻¹, while the decay represents the recombination of charge-separated state with back electron transfer rate constant of 1.75×10^5 s⁻¹ (5.7μ s) at room temperature. When [FeFe]-H₂ase mimic **11c** was introduced, a series of new absorptions of **11b** at around 400 nm appeared immediately (Figure 2b). The new absorption was weak, but its shape was similar to that of triad **11a**, both of which are in line with that of the Fe^IFe⁰ species formed by electrochemical reduction of [FeFe]-H₂ase mimics.¹³ The decays of the Fe^IFe⁰ absorptions could be described by a monoexponential function with a lifetime of 708 μ s for **11b** with **11c**, and >2 ms for triad **11a**, respectively (Figure 2d-e).

Evidently, triad **11a** yielded much more and longer-lived $Fe^{I}Fe^{0}$ species than the combined **11b** and **11c** under the same concentration, which was anticipated to make more contribution to the light-driven H₂ generation. As expected, the photochemical H₂ evolution experiments showed that triad **11a** generated more H₂ (TON = 0.35) than the corresponding system of **11b** with **11c** (TON = 0.04) at the same condition. Although the light-driven reaction was not catalytic yet, the combination of the ferrocene donor, the rhenium(I) PS, and the [FeFe]-H₂ase mimic was found helpful in improving the performance of light-driven H₂ evolution. The difference in the H₂ evolution efficiency for triad **11a**, and **11b** with **11c** implied that the assembly of an electron donor, a chromophore and

ACS Catalysis

Figure 2. Transient absorption spectra of (a) 11b and (b) triad 11a (red), 11b with 11c (black); the kinetic trace recorded at (c) 400 nm for 11b; (d) 400 nm for 11b with 11c; (e) 440 nm for triad 11a upon laser pulse by 355 nm light in CH_3CN under argon atmosphere.

[FeFe]- H_2 ase mimic to build up a multistep photoinduced electron transfer chain is a promising strategy for H_2 evolution.

4. PHOTOCHEMICAL H₂ EVOLUTION FROM A SELF-ASSEMBLING SYSTEM IN AN AQUEOUS SOLUTION: A BIOMIMETIC PATHWAY

Enzymes may bind substrates in elaborate pockets to direct a specific reaction pathway under mild conditions. $[FeFe]-H_2$ ase is deeply embedded within the protein matrix to operate the reversible reduction of protons to H₂ with remarkable activity.^{6,7} Developing a new system capable of simulating the functionality of $[FeFe]-H_2$ ase under aqueous conditions becomes an important objective to pursue.

Micelles have long been used to simulate a water-membrane interface found in biological systems. Like a cell membrane to some extent, it contains a negatively charged surface and a hydrophobic interior in water. We employed one of the most popular micelles, sodium dodecyl sulfate (SDS) micelle, to incorporate rhenium(I) PS **12a** or **12b** and Fe₂S₂ catalysts of [FeFe]-H₂ase mimic **12c** or **12d** in water, where ascorbic acid (H₂A) was used as a sacrificial electron donor and proton source (Scheme 7).²⁶ The assembly of the active components increased their solubility in water, and realized H₂ evolution in an aqueous solution by visible light irradiation. With respect to the subtle changes in the molecular structure of PS and Fe₂S₂ catalytic centers, spectroscopic study and H₂ generation provided valuable information on the extent they are included

into the SDS micelle that is reminiscent of [FeFe]-H₂ase enzymes buried in a protein matrix.

The interaction of the SDS micelles with the PS and Fe₂S₂ catalysts in water was clearly observed, suggesting that the water-insoluble PS and Fe₂S₂ catalysts were incorporated into the SDS micelle solution and the extent of the incorporation was selective. When the aqueous SDS micelle solution was irradiated for 1 h (λ > 400 nm), the amount of H₂ evolution from the mixture of 12a and 12c was much higher than that from the mixture of 12a and 12d, 12b and 12c, 12b and 12d, respectively (Table 1). Because the concentration of each complex included in the SDS micelle solution was different, we performed the reaction of the mixtures of 12a and 12c, 12b and 12c at identical concentration for systematic comparison. Notably, the amount of H_2 evolution from the mixture of 12a and 12c was still higher than that of 12b and 12c. As the extinction coefficients above $\lambda > 400$ nm for **12a** and **12b** were identical in both cases, and the higher concentration of 12a and 12c included in the SDS micelle bore higher efficiency, the strong interaction and close contact between the excited PS and the Fe₂S₂ catalysts are believed crucial for the efficient H₂ generation with visible light irradiation.

Although three-component intermolecular systems containing a ruthenium(II) or iridium(III) PS, a [FeFe]-H₂ase mimic like **13** or **14** (Scheme 8), and a sacrificial electron donor have been extensively studied since the first report in 2008,^{39–42} it is rather difficult to conduct such reactions in water because neither PS nor Fe₂S₂ catalyst of [FeFe]-H₂ase mimic is water-soluble.

Scheme 7. Photochemical H₂ Evolution from an Aqueous SDS Micelle Solution

Scheme 8. [FeFe]-H₂ase Mimics 13 and 14 Studied in Multi-Component Systems

Furthermore, the excited PS is not sufficient to deliver an electron to the Fe_2S_2 catalyst in the previous three-component systems. However, the potential of rhenium(I) PS is on the contrary. From estimation of the free energy change (Table 2) and analysis of the kinetics, we considered that the electron transfer process from the excited rhenium(I) PS to the Fe_2S_2 catalysts occurred, and thereby gave rise to $Fe^{I}Fe^{0}$ species. The better performance for **12a** and **12c** than **12b** and **12c** implied that both the driving force for the photoinduced electron transfer and the close contact between the excited PS and the Fe_2S_2 catalysts are advantageous.

5. PHOTOCATALYTIC H₂ EVOLUTION FROM A ROBUST, INEXPENSIVE, NANOCRYSTAL CDTE SYSTEM IN WATER

In comparison to the efficient [FeFe]-H₂ase in nature, however, artificial photosynthetic systems thus far give rise to a small amount of H₂ upon irradiation, and finally finish their photochemical H₂ evolution in an organic solution or a mixture of organic solvents and water. More strikingly, the synthetic [FeFe]-H₂ase mimics are not stable and easily decompose generally within 1 h of irradiation. Very recently, we constructed an efficient photocatalytic system for H₂ evolution in aqueous solution (Scheme 9),²⁷ where an iso-cyanide group was used to link three hydrophilic ether chains to the Fe₂S₂ active site of the [FeFe]-H₂ase mimic so as to improve the solubility of the Fe₂S₂ catalyst **15** in water. Nanocrystal CdTe

Scheme 9. Artificial System for Photocatalytic H_2 Evolution Based on Fe₂S₂ Catalyst 15 and Nanocrystal MPA-CdTe

stabilized by 3-mercapto-propionic acid (MPA-CdTe) was selected as a PS on account of its broad visible-light absorption, aqueous dispersion, and economical advantage over a precious metal PS.^{43–45} H₂A, used as a proton source and a sacrificial electron donor, is water-soluble and thus allows for the incorporation of a large amount of H₂A in the reaction vessel.

The rate of H_2 evolution was found dependent on the pH of the solution, and the concentration of the MPA-CdTe and H_2A . Under optimized condition, more than 500 equiv of H_2 per Fe₂S₂ catalyst **15** were achieved with 10 h of irradiation, indicating that both Fe₂S₂ catalyst **15** and the MPA-CdTe are regenerated in the whole photocatalytic reaction. The catalytic activity and stability are the highest known to date for lightdriven H_2 production by artificial [FeFe]-H₂ase mimics.

The photoinduced electron transfer from the MPA-CdTe PS to the Fe_2S_2 catalyst **15** was confirmed by the evaluation of the free-energy change and Fe^1Fe^0 species. Although the excited MPA-CdTe was capable of both oxidatively and reductively quenching by Fe_2S_2 catalyst **15** and H_2A , the relative quenching extent and rate constant indicated that oxidative quenching by Fe_2S_2 catalyst **15** dominated. The reduced Fe_2S_2 catalytic center **15**, Fe^1Fe^0 species, could further react with a proton for H_2

evolution. On the other hand, the formed hole remaining in the MPA-CdTe after electron transfer was subsequently regenerated by the sacrificial electron donor H_2A . As two electrons are required to produce each molecule of H_2 , the consecutive two-electron oxidation of H_2A must be responsible for the regeneration of MPA-CdTe and Fe₂S₂ catalyst 15.

6. CONCLUSION AND OUTLOOK

We have shown several artificial photosynthetic systems based on [FeFe]-H₂ase mimics for H_2 evolution. (1) Three molecular dyads bearing a rhenium(I) PS directly linked to one of iron centers of Fe₂S₂ active site of [FeFe]-H₂ase mimics, and one triad assembling an electron donor, a rhenium(I) PS and a Fe₂S₂ catalytic center, have been successfully constructed. Time-dependence of H₂ evolution and spectroscopic study clearly demonstrate that the larger driving force of the photoinduced electron transfer from the PS to the Fe₂S₂ catalytic center, and the longer lifetime of Fe^IFe⁰ species of the reduced Fe_2S_2 catalytic center, are important for H_2 evolution by visible light. (2) Self-assembly approach has been employed to mimic natural [FeFe]-H₂ase. Studies on the efficiency of photochemical H₂ production reveal that the strong interaction and close contact of the excited PS and Fe₂S₂ active site of [FeFe]-H₂ase mimics are crucial for H₂ evolution in an aqueous SDS micelle solution. This finding may be helpful in understanding the activity and mechanism of the catalytic cluster where in nature it is buried in a protein matrix. (3) A robust, inexpensive, nanocrystal CdTe system for photocatalytic H₂ production in water has been achieved. The obtained TON (505) is competitive with those from current state-of-the-art catalytic systems for H_2 production. The result shows that a synthetic Fe_2S_2 catalytic center of [FeFe]-H₂ase mimics, even the most popular type one that would decompose generally in 1 h irradiation, can act as an effective catalyst for light-driven H₂ production.

For the purpose of solar fuel H_2 production, these artificial systems offer a shortcut to taking advantage of the efficient principles of the primary photosynthetic reaction. The greater diversity in molecular design and the smaller components than their natural counterparts in artificial systems have higher potential for H_2 production. Photochemical methods coupled with time-resolved spectroscopy provide unique opportunities to identify and monitor intermediates in the reaction cycle leading to H_2 evolution. The kinetics measurements can shed more light on rate-limiting processes and the mechanism as a whole. At present, this field is so active that we have every reason to believe that scientists will soon be able to design and construct artificial [FeFe]-H₂ase systems for H_2 production with higher efficiency.

AUTHOR INFORMATION

Corresponding Author

*E-mail: lzwu@mail.ipc.ac.cn.

Funding

We are grateful for financial support from the Ministry of Science and Technology of China (2009CB22008, and 2007CB808004), the National Science Foundation of China (50973125, 21090343, and 20732007), Solar Energy Initiative of the Knowledge Innovation Program of the Chinese Academy of Sciences (KGCXZ-YW-389), and the Bureau for Basic Research of the Chinese Academy of Sciences.

Notes

The authors declare no competing financial interest.

REFERENCES

- (1) Gray, H. B. Nat. Chem. 2009, 1, 7.
- (2) Esswein, A. J.; Nocera, D. G. Chem. Rev. 2007, 107, 4022-4047.

(3) Barber, J. Chem. Soc. Rev. 2009, 38, 185-196.

(4) Lubitz, W.; Reijerse, E. J.; Messinger, J. Energy Environ. Sci. 2008, 1, 15-31.

(5) Magnuson, A.; Anderlund, M.; Johansson, O.; Lindblad, P.; Lomoth, R.; Polivka, T.; Ott, S.; Stensjö, K.; Styring, S.; Sundström, V.; Hammarström, L. Acc. Chem. Res. **2009**, 42, 1899–1909.

(6) Ghirardi, M. L.; Dubini, A.; Yu, J.; Maness, P.-C. *Chem. Soc. Rev.* **2009**, 38, 52–61.

(7) Frey, M. ChemBioChem 2002, 3, 153-160.

(8) Adams, M. W. W.; Stiefel, E. I. Science 1998, 282, 1842-1843.

(9) Cammack, R. Nature 1999, 397, 214–215.

(10) Tard, C.; Pickett, C. J. Chem. Rev. 2009, 109, 2245-2274.

(11) Chong, D.; Georgakaiki, I. P.; Mejia-Rodriguez, R.; Sanabria-Chinchilla, J.; Soriaga, M. P.; Darensbourg, M. Y. *Dalton Trans.* **2003**, 4158–4163.

(12) Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 12004–12014.

(13) Borg, S. J.; Behrsing, T.; Best, S. P.; Razavet, M.; Liu, X.; Pickett, C. J. J. Am. Chem. Soc. **2004**, 126, 16988–16999.

(14) Lomoth, R.; Ott, S. Dalton Trans. 2009, 9952-9959.

(15) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259-271.

(16) Wolpher, H.; Borgström, M.; Hammarström, L.; Bergquist, J.; Sundström, V.; Styring, S.; Sun, L.; Åkermark, B. *Inorg. Chem. Commun.* **2003**, *6*, 989–991.

(17) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100–108.

(18) Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Coord. Chem. Rev. 2009, 253, 1476–1494.

(19) Wang, M.; Na, Y.; Gorlov, M.; Sun, L. Dalton Trans. 2009, 6458-6467.

(20) Wang, M.; Sun, L. ChemSusChem 2010, 3, 551-554.

(21) Reisner, E. Eur. J. Inorg. Chem. 2011, 1005-1016.

(22) Si, G.; Wu, L.-Z.; Wang, W.-G.; Ding, J.; Shan, X.-F.; Zhao,

Y.-P.; Tung, C.-H.; Xu, M. Tetrahedron Lett. 2007, 48, 4775–4779. (23) Si, G.; Wang, W.-G.; Wang, H.-Y.; Tung, C.-H.; Wu, L.-Z. Inorg.

Chem. 2008, 47, 8101-8111. (24) Wang, W.-G.; Wang, H.-Y.; Si, G.; Tung, C.-H.; Wu, L.-Z.

(24) Wang, W.-G.; Wang, H.-T.; Si, G.; Tung, C.-T.; Wu, L.-Z. Dalton Trans. 2009, 2712–2720.

(25) Wang, W.-G.; Wang, F.; Wang, H.-Y.; Si, G.; Tung, C.-H.; Wu, L.-Z. Chem.—Asian J. 2010, 5, 1796–1803.

(26) Wang, H.-Y.; Wang, W.-G.; Si, G.; Wang, F.; Tung, C.-H.; Wu, L.-Z. *Langmuir* **2010**, *26*, 9766–9771.

(27) Wang, F.; Wang, W.-G.; Wang, X.-J.; Wang, H.-Y.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed. **2011**, 50, 3193–3197.

(28) Wang, H.-Y.; Si, G.; Cao, W.-N.; Wang, W.-G.; Li, Z.-J.; Wang, F.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. **2011**, *47*, 8406–8408.

(29) Ott, S.; Kritikos, M.; Åkermark, B.; Sun, L. Angew. Chem., Int. Ed. 2003, 42, 3285–3288.

(30) Ott., S.; Borgström, M.; Kritikos, M.; Lomoth, R.; Bergquist, J.; Åkermark, B.; Hammarström, L.; Sun, L. *Inorg. Chem.* **2004**, *43*, 4683– 4692.

(31) Song, L.-C.; Tang, M.-Y.; Mei, S.-Z.; Huang, J.-H.; Hu, Q.-M. Organometallics **2007**, *26*, 1575–1577.

(32) Ekström, J.; Abrahamsson, M.; Olson, C.; Bergquist, J.; Kaynak, F. B.; Eriksson, L.; Sun, L.-C.; Becker, H.-C.; Åkermark, B.; Hammarström, L.; Ott, S. *Dalton Trans.* **2006**, 4599–4606.

(33) Li, X.; Wang, M.; Zhang, S.; Pan, J.; Na, Y.; Liu, J.; Åkermark, B.; Sun, L. J. Phys. Chem. B. **2008**, *112*, 8198–8202.

(34) Kluwer, A. M.; Kapre, R.; Hartl, F.; Lutz, M.; Spek, A. L.; Brouwer, A. M.; van Leeuwen, P. W. N. M.; Reek, J. N. H. *Proc. Natl. Acad. Sci. U.S.A.* **2009**, *106*, 10460–10465.

(35) Song, L.-C.; Tang, M.-Y.; Su, F.-H.; Hu, Q.-M. Angew. Chem., Int. Ed. 2006, 45, 1130–1133.

(36) Song, L.-C.; Wang, L.-X.; Tang, M.-Y.; Li, C.-G.; Song, H.-B.; Hu, Q.-M. Organometallics **2009**, 28, 3834–3841.

- (37) Samuel, A. P. S.; Co, D. T.; Stern, C. L.; Wasielewski, M. R. J. Am. Chem. Soc. 2010, 132, 8813–8815.
- (38) Schanze, K. S.; MacQueen, D. B.; Perkins, T. A.; Cabana, L. A. Coord. Chem. Rev. 1993, 112, 63-89.
- (39) Na, Y.; Zhang, P.; Wang, M.; Sun, L. Inorg. Chem. 2007, 46, 3813–3815.
- (40) Na, Y.; Wang, M.; Pan, J.-X.; Zhang, P.; Åkermark, B.; Sun, L. Inorg. Chem. 2008, 47, 2805–2810.
- (41) Streich, D.; Astuti, Y.; Orlandi, M.; Schwartz, L.; Lomoth, R.; Hammarström, L.; Ott, S. Chem.—Eur. J. 2010, 16, 60–63.
- (42) Zhang, P.; Wang, M.; Na, Y.; Li, X.; Jiang, Y.; Sun, L. Dalton Trans. 2010, 39, 1204–1206.
- (43) Li, Y.; Jing, L.; Qiao, R.; Gao, M. Chem. Commun. 2011, 47, 9293-9311.
- (44) Brown, K. A.; Dayal, S.; Ai, X.; Rumbles, G.; King, P. W. J. Am. Chem. Soc. 2010, 132, 9672–9680.
- (45) Nann, T.; Ibrahim, S. K.; Woi, P.-M.; Xu, S.; Ziegler, J.; Pickett, C. J. Angew. Chem., Int. Ed. **2010**, 49, 1574–1577.